2017-06-28 | Noisy Black Box Optimization: Algorithms and Effort Analysis

2017-06-28   

Abstract

In this talk we present a computational complexity analysis for optimization problems where the objective function value can only be estimated with errors at any decision point. In particular, we study two different settings. In the first setting, the model is basically stochastic programming, but only one sample is taken at each decision point. In the second setting, the objective value can be estimated arbitrarily close to the true value, but at a cost that is increasing with regard to the inverse of the precision desired. Furthermore, we discuss extensions of the analysis to a general constrained model with a composite objective function, consisting of the vague objective and a non-smooth regularizer.

Time

2017年6月28日(周三) 15:00

Speaker

ShuZhong Zhang(University of Minnesota)


Professor and Department Head,Department of Industrial & Systems Engineering, College of Science & Engineering, Distinguished Professor, School of Information Management and Engineering,Shanghai University of Finance and Economics.

joint work with Xiang Gao and Xiaobo Li】

Room

信息管理与工程学院308室

上海财经大学

上海市杨浦区武东路100号